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Abstract

Reward guidance has been applied to great suc-
cess in the test-time adaptation of continuous dif-
fusion models; it updates each denoising step
using the gradients from a downstream reward
model. We study reward guidance for discrete
diffusion language models, where one cannot dif-
ferentiate through the natural outputs of the model
because they are discrete tokens. Existing ap-
proaches either replace these discrete tokens with
continuous relaxations, or employ techniques like
the straight-through estimator. In this work, we
show the downsides of both these methods. The
former degrades gradient feedback because the
reward model has never been trained with con-
tinuous inputs. The latter involves incorrect op-
timization because the gradient evaluated at dis-
crete tokens is used to update continuous logits.
Our key innovation is to go beyond this trade-
off by introducing a novel mechanism called En-
tRGi: Entropy aware Reward Guidance that dy-
namically regulates the gradients from the reward
model. By modulating the continuous relaxation
using the model’s confidence, our approach sub-
stantially improves reward guidance while provid-
ing reliable inputs to the reward model. We em-
pirically validate our approach on a 7B-parameter
diffusion language model across 3 diverse re-
ward models and 3 multi-skill benchmarks, show-
ing consistent improvements over state-of-the-art
methods.

1. Introduction

Reward guidance has proven highly effective for test-time
adaptation in continuous diffusion models, where gradients
from a downstream reward model are used to iteratively re-
fine each denoising step toward desired outcomes (Dhariwal
& Nichol, 2021). This paradigm has enabled controllable
generation across inverse problems (Chung et al., 2023;
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2024; Rout et al., 2023; 2024), stylization (Hertz et al., 2023;
Rout et al., 2025b), and semantic editing (Rout et al., 2025a),
by allowing diffusion models to optimize task-specific ob-
jectives without retraining. Motivated by the success, re-
cent focus has increasingly shifted toward inference-time
steering for diffusion models as a promising alternative to
post-training adaptation in large language models (LLMs).

In this work, we study reward guidance in the setting of
discrete diffusion large language models (dLLMs) (Austin
et al., 2021; Lou et al., 2024; Sahoo et al., 2024; Shi et al.,
2024; Nie et al., 2025; Ye et al., 2025; DeepMind, 2025).
Unlike autoregressive LLMs, dLLMs generate text by start-
ing from a fully masked sequence and iteratively denoising
tokens in parallel, not necessarily committing to a fixed left-
to-right order. This parallel and order-agnostic generation
paradigm provides a natural foundation for controllability
and inference-time steering. However, it also introduces a
fundamental challenge for discrete diffusion: the natural
outputs of dLLMs are discrete tokens, which prevents direct
gradient propagation from reward models.

Existing approaches to address this challenge can be broadly
categorized into training-based and training-free methods.
Training-based approaches focus on adaptation and post-
training of dLLMs (Rector-Brooks et al., 2024; Borso et al.,
2025; Tang et al., 2025; Wang et al., 2025), such as in-
struction tuning (Nie et al., 2025) and reinforcement learn-
ing (Zhao et al., 2025; Zekri & Boullé, 2025). Since training-
based methods can be expensive, there has been growing
interest in training-free inference-time steering of discrete
diffusion models across text and image domains (Dang et al.,
2025; Ou et al., 2025; Rout et al., 2025¢).

Training-free approaches address the non-differentiability
of discrete tokens differently depending on the differentia-
bility of the reward model. When the reward model is non-
differentiable, a common line of work selects one trajectory
among many runs, often guided by particle-based sampling
and resampling to favor high-reward samples (Dang et al.,
2025; Singhal et al., 2025). For differentiable reward, there
are two primary ways to deal with non-differentiability of
discrete tokens. One class of methods replaces discrete
tokens with continuous relaxations, enabling gradients to
propagate through soft embeddings (Murata et al., 2024).
Despite the simplicity, reward models are trained exclu-
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Figure 1. Overall pipeline of Entropy-aware Reward Guidance (EntRGi). In standard sampling methods (Ye et al., 2025; Nie et al.,
2025), the current input z; is fed to the discrete diffusion LLM (dLLM), which produces output distributions at the masked positions; the
most confident tokens are then committed to obtain z;—1. Our method EntRGi instead modifies the logits at the masked positions using
gradients from a reward model, while keeping both the dLLM and the reward model frozen. The embeddings provided to the reward
model at masked positions are constructed as an entropy-weighted interpolation between a continuous relaxation of the token embeddings
and sampled hard token embeddings. Lower entropy proportionally emphasizes the continuous relaxation, while higher entropy increases
reliance on hard tokens via a straight-through estimator (Bengio et al., 2013; Jang et al., 2017; Rout et al., 2025c¢).

sively on discrete text, and querying them with continuous
inputs can significantly degrade the reliability of the gra-
dient guidance. Another class of methods discretizes the
soft embeddings and relies on the straight-through estimator
(STE) (Bengio et al., 2013) to provide more reliable gradi-
ents (Rout et al., 2025c). While this enables optimization
in practice, it introduces an inherent mismatch: gradients
evaluated at discrete tokens are used to update continuous
logits, leading to potentially incorrect optimization.

To go beyond this tradeoff, we introduce EntRGi (Entropy-
aware Reward Guidance)', an entropy-aware reward guid-
ance mechanism for discrete diffusion language models. As
illustrated in Figure 1, EntRGi interpolates between the con-
tinuous relaxation of the token embeddings (also known as
soft token embeddings) and sampled hard token embeddings
by using the model’s unconditional entropy. Thus, EntRGi
provides reliable gradients during optimization by ensuring
that the reward model is evaluated on inputs it can reliably
interpret throughout the denoising process.

Our contributions can be summarized as follows. (1) We in-
troduce EntRGi, an entropy-aware reward guidance method
for discrete diffusion language models. (2) We conduct ex-
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tensive experiments on a 7B-parameter diffusion language
model (Ye et al., 2025). Using 3 reward models (Liu et al.,
2025) and 3 multi-skill benchmarks (Liu et al., 2024; Malik
et al., 2025; Tan et al., 2025), we demonstrate that gradient-
based reward guidance is effective at scale and show that
EntRGi consistently outperforms prior state-of-the-art meth-
ods. (3) We conduct a detailed empirical analysis of En-
tRGi’s behavior, identifying the mechanisms that drive its
improvements over prior methods.

2. Related Work

Discrete diffusion posterior sampling. Discrete diffusion
models have recently emerged as a powerful framework for
posterior sampling over categorical sequences, offering a
promising alternative to autoregressive generation. Unlike
autoregressive models, which commit to a fixed left-to-right
decoding order, discrete diffusion models generate a full
predictive distribution over all tokens at each denoising step,
enabling parallel generation and flexible conditioning. This
property makes discrete diffusion particularly well-suited
for posterior sampling under external constraints, such as re-
ward models or energy functions, without retraining or task-
specific fine-tuning (Dang et al., 2025; Rout et al., 2025¢).
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Gradient-free reward guidance. In continuous diffusion,
which is popular primarily for images, search based meth-
ods have recently gained attention (Singhal et al., 2025;
Jain et al., 2025; Ramesh & Mardani, 2025; Guo et al.,
2025; Kim et al., 2025; Zhang et al., 2025). A widely used
gradient-free baseline for both autoregressive and discrete
diffusion models is Best-of-N (BoN), which samples N
independent trajectories and selects the one with the high-
est reward. While simple, BoN is often sample-inefficient,
especially when reward signals are sparse. More structured
gradient-free approaches for discrete diffusion build on ad-
vanced sampling based methods (Uehara et al., 2025; Dang
et al., 2025; Chu et al., 2025; Guo et al., 2024). Particle
Gibbs methods (Dang et al., 2025) perform trajectory-level
resampling to approximate the posterior, while split Gibbs
discrete diffusion (SGDD) (Chu et al., 2025) alternates be-
tween two samplers: sampling from the prior and reward
model. These methods avoid gradient approximation but
suffer from slow convergence due to the curse of ambient
dimension and limited scalability.

Gradient-based reward guidance. Motivated by the suc-
cess of gradient-based guidance in continuous diffusion
models (Dhariwal & Nichol, 2021; Chung et al., 2023;
Bansal et al., 2023), several works incorporate gradient
guidance into inference-time steering for discrete diffu-
sion. APS (Rout et al., 2025¢c) formalizes posterior sam-
pling for discrete diffusion and demonstrates strong empir-
ical performance over both gradient-free Gibbs sampling
methods (Chu et al., 2025) and gradient-based continuous-
relaxation via Gumbel-Softmax dequantization (Murata
et al., 2024). To backpropagate through the reward model,
APS quantizes the soft token embeddings and employs
straight-through estimator (STE) (Bengio et al., 2013). Sub-
sequent work employs sequential Monte Carlo (SMC) sam-
pling to enhance exploration (Ou et al., 2025).

Challenges and limitations. Despite their empirical suc-
cess, existing approaches face fundamental challenges.
Gradient-free methods often suffer from weak guidance,
while gradient-based methods must contend with the mis-
match between discrete model outputs and the continuous
representations required for gradient propagation. Continu-
ous relaxation approaches query reward models with inputs
far outside their training distribution, potentially degrading
gradient reliability, whereas discretization-based methods
introduce approximation error by using gradients evaluated
at discrete tokens to update continuous logits. These is-
sues are pronounced during early denoising steps, especially
when predictive distributions exhibit higher entropy.

The proposed method EntRGi addresses these limitations
by introducing an entropy-aware reward guidance mecha-
nism for discrete diffusion language models. Rather than
committing to a fixed relaxation or discretization strategy,

EntRGi dynamically modulates the token representation
based on the model’s entropy. This allows EntRGi to bal-
ance gradient fidelity and reward-model reliability through-
out the denoising process. To the best of our knowledge,
EntRGi is the first training-free reward guidance method for
mask diffusion language models that explicitly leverages
model uncertainty to adaptively regulate gradient guidance.

3. Reward Guidance for Discrete Diffusion

Preliminaries. Masked diffusion language models (Sahoo
etal., 2024; Lou et al., 2024; Nie et al., 2025; Ye et al., 2025)
are generative models that operate over L-length strings of
tokens, where each token is from a vocabulary V consisting
of K “actual” tokens and one “mask” token m. Standard
generation (i.e. the “reverse process”) in masked diffu-
sion starts from time 7" and an initial string of all masks
zp = mY. Time goes fromt = T to t = 0, and each z_,
is made from the preceding z; by first choosing k currently
masked tokens in z; and unmasking them using the proba-
bility distribution from one inference pass of the diffusion
model. It ends with a string z( that contains no mask tokens.
We now develop notations to make this more specific.

Let M, be the set of masked positions in z;. In this work
we focus on the “unmask and commit” mode of generation
(Sahoo et al., 2024), which means that that once a token is
unmasked it remains fixed for all subsequent steps. That
means that zl_; = 2! foralll ¢ M,.

For the currently masked positions, we input z; into the
diffusion model to obtain logits that we will sample from.
Let 0 denote the parameters of the diffusion model. For any
currently masked position [ € M, define ¢}(z;) € RE
to be the un-normalized logits at that position, and define
pl(2) = softmax(¢g(z)/7) to be the resulting probabil-
ity distribution over the vocabulary, for some temperature
7. Finally, let pg(2;) denote the set of distributions over all
currently masked locations [ € M.

The first step in unmasking is to choose a set U (pg(z¢)) of k
currently-masked tokens according to some pre-set selection
logic. For example, in the model Dream-vO-Instruct-7B (Ye
et al., 2025) used in this work, this pre-set selection logic is
to pick the k tokens whose distributions p, have the smallest
entropy. Once we have this set U(pg(z:)), we generate the
remaining tokens in z;_; by sampling tokens in U (pg(z:))

2y ~ Pylz) forl € U(po(z))
and keeping all the other tokens as masks, i.e. z!_; = m
forall ] € M(z) \U(po(zt))-
3.1. Algorithm: Entropy Aware Reward Guidance

Recall that we want to change the above generation process
so that it is more likely to generate high reward strings as
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Algorithm 1 EntRGi: Entropy Aware Reward Guidance

Require: Reward model R, guidance scale 7, reward
model gradient steps M, temperature T
1: Initialize zr = m%
2: for time stepst =T,7T —1,...,1do
3:  Set masked positions M, < {I : z} = m}
4:  Compute logits 1! = ¢, (2;) forl € M,
5 forj=1,...,M do
6 Compute ¢' = softmax(ep!/7) for | € M,
7 Sample 2! ~ ¢! forl € My, and let its embedding
be &' = Ef(a!)
8: Compute the average embeddings
e =>..,dElforl e M,
9: Compute w! = Entropy(q')/log K forl € M,
10: Construct the input to the reward model;

N {él—ksg(wl(él—él)) le M,
e =

sg(BR=1)) L M,
Note that g and hence e are functions of the logits
1. sg stands for stop gradient.

11: ’l/Jl (*’l,bl‘i’?]v.d,lR(é) for [ EMt.

12:  end for

13:  q' = softmax(v'/7) forl € M,

14 Unmask tokens z!_; ~ ¢ forl € U(q)

15:  Copy over all other tokens (masked or unmasked),

ie 2l =zlforalll ¢ U(q)
16: end for
17: return zg

measured by a downstream reward model R. Typically, R
is itself a language model fine-tuned to output scalar scores
(Liu et al., 2025; Wang et al., 2024; Ouyang et al., 2022). We
will assume that the vocabulary of the reward model consists
of the same K “actual” tokens as that of the diffusion model
vocabulary V. Naively, the input to R is a string of discrete
tokens. However, note that during inference in R, these
are immediately converted into a sequence of embedding
vectors by looking up each token in the input embedding
table E of the model R.

In this work we will find it useful to treat R more gen-
erally as a scalar function of L input embedding vectors
e',...,el, each of which may or may not be members
of the input embedding table E®. We denote this (more
general) function as R(e) where e = (e!,... el). We
assume that R(e) is a differentiable function of the vectors
e; this is the case for transformer-based reward models, like
the Skywork-Reward (Liu et al., 2025) reward models we
consider, which are derived from the Qwen3 (Yang et al.,
2025) language model family.

EntRGi explores the following question: How can we lever-
age reward gradients to iteratively guide a discrete diffusion
LLM generation toward higher-reward token sequences?

Let 1! = pl,(2;). EntRGi operates as follows, over M such
iterations, and on N parallel trajectories per prompt:

1. Tt constructs an input embedding é using 1)!. é blends
the continuous relaxation € and hard token e, favoring e
at low entropy and e at high entropy.

2. Feeds é to R to obtain scalar reward R(é).
3. Updates 9" via gradient feedback V . R(€).

Algorithm | provides a detailed description of our method.

Remarks. The STE used in Rout et al. (2025¢) evaluates
rewards at discrete tokens but uses those gradients to update
continuous logits, creating a fundamental mismatch. On
the other hand, continuous relaxation avoids this, but feeds
the reward model out-of-distribution input. Entropy deter-
mines which failure mode dominates: at low entropy, soft
embeddings concentrate near valid tokens, making contin-
uous relaxation reliable; at high entropy, soft embeddings
drift far from any token, making STE necessary.

3.2. Analysis: Gradient Approximation and Error

In this section, we analyze how gradients flow through
EntRGi and characterize the behaviour of our entropy-
weighted formulation. Recall from Algorithm 1 that the
input to the reward model at masked positions is constructed

as:
e)), leM 1)
We analyze the gradient V , R(€) for [ € M:

é' = e+ sg(w'(e -

__OR o0& oel  0q
~0el oel 0q' O
Since the stop-gradient blocks the second term in Equation 1,

the partial derivative simplifies to 9é'/0e! = I, and the
gradient with respect to the logits 1! becomes:

OR
oél
where % € R'*4 is the gradient of the reward with respect
to the input embedding &', EF € RX*? is the embedding

matrix of the reward model, and Jy,, € RX*¥ is the Jaco-
bian of the softmax.

Vi R(8) )

Vi R(€) = (E™)" - T 3)

Approximation Error in Gradient Feedback. The reward
model receives é' as input, but due to the stop-gradient,
gradients flow only through the soft embedding €’. This
mismatch between where the reward is evaluated and where
gradients are computed introduces an approximation er-
ror, which we now characterize. The reward input is
e = (1 —whe! +w'e!, where & = 3, ¢'[k] EF[k] is
the soft embedding and & = Ef[z!] is the sampled hard
embedding. Define the approximation error as the distance
between the reward input and the soft embedding:

g = e —&| =w'|e' - &| @
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This measures the mismatch between where we evaluate
the reward (&') and where gradients propagate (&'). The
expected squared deviation E[||&’ — &'||?] = Var,:[é!] van-
ishes as entropy decreases: H(q') — 0 = E[||&' —
ell]] —o.

Alignment Error. Define the alignment error as the distance
from the reward input to the nearest hard token:

D' = min ||’ — EX[K]] 5)

As entropy decreases, g' concentrates and & approaches a
hard token: H(q') — 0 = min |l&' — EE[k]|| — 0.

Comparing APS and EntRGi. With APS, which uses the
STE, (w' = 1), and the reward input is &' = &'

Ehps = ||&' — €|, Dhps=0 (6)

With EntRGi (w! = H(q')/log K):

Ebmirai = w'[e — & ©)

Dhuncs = min|(1 - w')e! +w'& — K| (®)
As entropy decreases: (i) w' — 0, so €L ira; — 0; and
(ii) &' approaches a hard token, so DL o — 0. At
low entropy, EntRGi achieves lower approximation error
(&L irai < €\pg) while maintaining low alignment error
(DL irai = 0). At high entropy w' — 1, both methods use
hard tokens (D' ~ 0 for both). At moderate entropy, a trade-
off between &' and D! is unavoidable; EntRGi distributes
the error budget proportionally via w', whereas APS places
all error into approximation regardless of entropy.

4. Experiments

Models. We use Dream-v0-Instruct-7B* (Ye et al., 2025) as
the base diffusion language model in all experiments. As re-
ward models, we adopt the Skywork family (Liu et al., 2025),
which demonstrates strong performance across diverse do-
mains including safety, factuality, helpfulness, mathematics,
and code (Malik et al., 2025). Specifically, we evaluate us-
ing three publicly available model sizes: Skywork-Reward-
V2-Qwen3-0.6B>, Skywork-Reward-V2-Qwen3-1. 7B*, and
Skywork-Reward-V2-Qwen3-4B°.

We exclude LLaDA (Nie et al., 2025) from our experiments
because it does not share a tokenizer with any autoregressive
model, as also noted by Israel et al. (2025). Since reward
models are typically derived from autoregressive backbones,
this tokenizer mismatch makes LLaDA incompatible with

’Dream-org/Dream-v0-Instruct-7B
3Skywork/Skywork-Reward-V2-Qwen3-0.6B
*Skywork/Skywork-Reward-V2-Qwen3-1.7B
3Skywork/Skywork-Reward-V2-Qwen3-4B

our experimental setup. More generally, our framework
applies to base—-reward model pairs that share a tokenizer.
Extending EntRGi to settings with mismatched tokenizers
remains an open challenge; techniques based on on-policy
distillation (Patifio et al., 2025) provide a promising direc-
tion for future work.

Datasets. We use prompts for Dream from three bench-
marking suites: Reward-Bench-2 (Malik et al., 2025), RM-
Bench (Liu et al., 2024), and JudgeBench (Tan et al., 2025).
These datasets contain prompts that measure multiple fine-
grained chatbot abilities, such as precise instruction follow-
ing, safety, factuality, and knowledge, with some coverage
of math and code.

Metrics. For all datasets, we report reward values on
discretized samples as evaluated by each reward model.
Specifically, we report the maximum reward across samples
(Top@1) and the average reward across all N trajectories
per prompt (Avg@N), with N = 4 unless stated other-
wise. Top@ 1 measures the best achievable outcome, while
Avg@ N reflects overall generation quality. Although these
metrics verify that optimized logits yield high-reward dis-
crete samples, they may still be susceptible to reward hack-
ing. To detect such failures, we additionally use LM Unit-
Owen2.5-72B (Saad-Falcon* et al., 2024) as an external
judge. LMUnit is explicitly trained to perform “unit-tests”
on fine-grained rubrics (e.g., “Is the response coherent?”),
providing scalar scores from 1 to 5. We average scores
across five rubrics. Stable or improving LMUnit perfor-
mance provides evidence that gains in reward model scores
do not arise from reward hacking.

Appendix A details the experimental setup, prompt formats,
and other implementation hyperparameters.

Baselines. We compare EntRGi against gradient-based
inference-time steering methods, with Best-of- N (BoN) as a
gradient-free reference point. BoN generates /V independent
trajectories and selects the highest-scoring sample, and is
widely used for evaluating reward models on downstream
tasks (Malik et al., 2025; Liu et al., 2024).

While gradient-based methods incur additional compu-
tational cost by leveraging reward model gradients, the
tradeoff between performance and computation relative to
gradient-free approaches is highly setting-dependent (Mu-
rata et al., 2024; Rout et al., 2025¢) and beyond the scope of
this work. Our focus is therefore on improving performance
within the class of gradient-based methods, which share
comparable computational costs.

Among gradient-based baselines, we evaluate an
expectation-based (i.e. continuous relaxation) approach
that feeds a convex combination of token probabilities
and reward-model embeddings to the reward model, as
used in simplex-diffusion methods (Tae et al.,, 2025;
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Table 1. Performance of Dream-v0-7B-Instruct on Reward-Bench-2 (Malik et al., 2025), JudgeBench (Tan et al., 2025), and RM-Bench
(Liu et al., 2024) with Skywork-Reward-v2-Qwen3-1.7B as the reward model. EntRGi outperforms APS (Rout et al., 2025¢) on majority
of tasks, and provides stronger overall performance at higher temperatures (7=0.7).

Method Reward-Bench-2 JudgeBench RM-Bench
Top@1l Avg@4 LMUnit Top@1 Avg@4 LMUnit Top@l1l Avg@4 LMUnit
Temperature (7 = 0.1)
BoN 0.184022 0.05+023 3.74+004 0.00+015 -0.07+0.16 3.75+003 3.05+005 3.02+005 3.93+0.01
Expectation 2.19+0.19 1.62+0.17 4.12+003 0.68+0.19 -0.06+021 3.81+002 3.33+020 2.59+0.12 3.89+0.04
APS 2.95+021 1.47+020 4.19+001 1.67+011 -0.17+014 3.89+003 4.72+0.13 2.46+0.17 4.01+0.03
EntRGi 3.07+022 1.62+0.18 4.22+002 1.73+014 -0.11+0.18 3.94+001 4.90+0.13 2.75+0.14 4.06=+0.01
Temperature (7 = 0.7)
BoN 2.99+023 1.38+029 4.15+002 1.65+018 -0.84+016 3.91+002 5.11+020 2.98+0.15 4.02+0.03
Expectation 3.95+028 2.23+024 4.224002 2.30+008 0.13+007 3.97+001 5.45+016 3.294013 4.02+0.03
APS 3.62+027 1.80+024 4.22+002 1.87+014 -0.63+0.10 3.93+002 5.11+014 2.66+0.15 4.00-+0.02
EntRGi 391+030 2.20+026 4.25+002 2.44+006 0.02+010 3.98+002 5.70+0.12 3.41+0.14 4.04-+001
JudgeBench Reward-Bench-2 RM-Bench Average .
0.151 - ::tSRGi 7.5 .
™ ——+ Entropy 0.101 -
? 0.104" 20 48
) ] <
20_054 2.9.05 5 L
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Figure 2. Average L2-norm between the soft embedding € and the reward model input € as a function of decoding timestep, along with
average entropy. The maximum possible entropy is log K ~ 11. EntRGi reduces early-step approximation error compared to APS by
upweighting the continuous relaxation on tokens with relatively low entropy in the predicted sequence.

Karimi Mahabadi et al., 2024). Finally, we compare against
APS (Rout et al., 2025¢), a strong prior method that updates
logits at each denoising step by feeding discretized tokens
to the reward model via the straight-through estimator
(STE) (Bengio et al., 2013; Jang et al., 2017).

4.1. Evaluation Results

Gradient-based methods outperform BoN. As shown in
Table 1, all gradient-based methods consistently outperform
Best-of-N (BoN) across all benchmarks. Gradient-based
guidance can be viewed as performing directed search in the
continuous space spanned by token embeddings, whereas
BoN relies on zeroth-order sampling by selecting from a
finite set of randomly generated trajectories. While gradient-
based methods require additional compute at test time, the
availability of reward gradients enables stronger exploration
of the embedding space. In practice, this additional compute
translates into improved generation quality.

APS is sensitive to sampling temperature. At 7=0.1, APS
outperforms Expectation (e.g., 2.95 vs. 2.19 on Reward-

Bench-2). However, when the temperature is increased to
7=0.7, the expected gains from APS are not realized suf-
ficiently compared to Expectation (3.62 vs 3.95), despite
an overall improvement in absolute reward across all meth-
ods. This reversal suggests that increased sampling entropy
induces incorrect gradients when naively using the straight-
through estimator for all tokens in the sequence.

Continuous relaxations on low-entropy positions pro-
vides consistent improvements. EntRGi achieves a relative
improvement of approximately 33% over APS in reward-
model-judged output quality. EntRGi additionally improves
the LMUnit score on RewardBench-2 from 4.19 (APS) to
4.22, and on RM-Bench from 4.01 to 4.06, while also achiev-
ing higher Top@1 reward across all tasks. EntRGi fur-
ther improves at higher temperature (7=0.7), achieving the
strongest results across all 3 benchmarks.

STE is critical at high-entropy positions. Removing STE
at high-entropy positions reduces EntRGi to the Expectation
baseline. As shown in Table 1, EntRGi consistently outper-
forms Expectation, highlighting the importance of STE in



EntRGi: Entropy Aware Reward Guidance for Diffusion Language Models

RM-Bench JudgeBench Reward-Bench-2
2.0
o 10°
Z1.0
uy
[0}
0.0 102 2
[}
>
1.0 2
Y
O 101
s
c 0.5
i
0.0 10°

Entropy

Figure 3. Heatmaps showing the joint distribution of entropy and approximation error £ for three benchmarks (RM-Bench, JudgeBench,
Reward-Bench-2) using APS (top) and EntRGi (bottom). Color indicates frequency on a log scale. EntRGi upweights soft tokens based
on entropy. For entropy in the range 1-4, the soft approximation & is heavily preferred, trading off £' for D' proportionally.
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Figure 4. LMUnit score with increasing reward model size across Reward-Bench-2 (Malik et al., 2025), RM-Bench (Liu et al., 2024), and
JudgeBench (Tan et al., 2025), for M = 3 and 7 = 0.7. Increasing reward model size generally leads to improved performance. We
observe similar trends for other metrics (Top@1, Avg@4), reported in Section B.1 in the Appendix.

these regimes. At the beginning of the denoising process
(t = T), the predictive entropy is typically high at most posi-
tions due to limited contextual information. However, as dis-
cussed in Section 3.2, APS treats all positions uniformly and
applies the STE regardless of entropy, which incurs large ap-
proximation error ¢! at positions where soft representations
would be more appropriate. In contrast, EntRGi adaptively
selects soft representations at positions /, which reduces the
approximation error. To receive reliable gradients at [, the
reward model must see realistic hard tokens at the remaining
high-entropy positions {1,...,l— 1,0+ 1,..., L} because
it requires an entire sequence to compute the score. EntRGi
automatically adjusts hardness via STE, as &' — &' when
w! — 1, justifying why STE is critical in this regime.

EntRGi reduces approximation error during early de-
noising steps. To further analyze EntRGi’s behavior over
the denoising trajectory, we examine the L2 discrepancy
between the reward model input € and the soft embedding
€ across timesteps. Figure 2 reports this error averaged
over sequence length L = 128 and 32 prompts. At the

initial denoising step (t = T'), all tokens contribute to the
approximation error, since the sequence is fully masked.
As denoising progresses and tokens become increasingly
determined, fewer positions contribute, leading to a natural
decay in error as t — 0.

In moderate- to high-entropy regimes (entropy ~ 4-6), APS
often samples discrete tokens whose embeddings &' deviate
substantially from &', resulting in large approximation error
in early decoding. In contrast, EntRGi leverages token-
level entropy to adaptively weight the soft embedding &',
reducing this discrepancy by trading off alignment error
against reward-model reliability. As denoising progresses,
the approximation error of both methods converges to zero.

EntRGi balances approximation error and reward-
model reliability via token-level reweighting. To under-
stand the source of EntRGi’s gains, we analyze the relation-
ship between predictive entropy and approximation error.
Figure 3 visualizes the joint distribution of entropy and
approximation error across three datasets. For APS (top
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row), approximation error remains high across moderate to
high entropy regions and grows sharply with entropy, indi-
cating a strong mismatch between the discretized reward
inputs and the continuous logits being updated. This steep
error—entropy coupling leads to unreliable gradient signals.

In contrast, EntRGi (bottom row) exhibits a controlled and
approximately linear error—entropy relationship. By adap-
tively reweighting soft embeddings and hard tokens at the
token level, EntRGi limits approximation error in moderate-
entropy regions while preserving reward-model fidelity at
high entropy. This entropy-aware balancing produces more
stable and reliable reward gradients, which directly trans-
lates into improved generation performance.

4.2. Scaling Behaviour

EntRGi benefits from increasing reward model size. In
Figure 4, we study the effect of reward model size, rang-
ing from 0.6B to 4B parameters. Across all three datasets,
increasing reward model size leads to consistent improve-
ments in scores as measured by LMUnit for all methods.
For instance, APS improves from an average LMUnit score
of 4.00 at 0.6B to 4.08 at 4B, while EntRGi improves from
4.04 to 4.12 over the same range. At each reward model size,
EntRGi achieves better score, outperforming APS across
all datasets. These results show that larger reward models
improve overall performance, while EntRGi maintains its
advantage across reward model scales.

Increasing reward model gradient steps improves per-
formance but risks over-optimization. In Figure 5, we
analyze the effect of increasing the number of optimization
steps M. Increasing M from 1 to approximately 3—4 leads
to consistent improvements in both reward and LMUnit
scores on JudgeBench-2 and RM-Bench, after which per-
formance begins to degrade. On Reward-Bench-2, reward
scores continue to improve up to M = 5; however, the
LMUnit score initially declines at around M = 2-3 before
recovering at higher optimization depths. Overall, M = 3—
4 represents a reliable operating range in which both reward

and LMUnit scores improve consistently across benchmarks.
These observations suggest that (i) the optimal number of
optimization steps varies across datasets, motivating further
investigation in future work, and (ii) drastically increasing
M can lead to reward hacking due to over-optimization (Gao
et al., 2022; Moskovitz et al., 2023).

5. Conclusion

We introduced EntRGi, an entropy-aware reward guidance
method for discrete diffusion language models that dynami-
cally interpolates between continuous relaxations and hard
token embeddings based on the model’s predictive entropy.
This simple mechanism addresses the fundamental tension
between gradient accuracy and reward model reliability i.e.
trusting soft embeddings when the model is confident and
reverting to discrete tokens when uncertainty is high. Ex-
tensive experiments on a 7B-parameter diffusion language
model across three reward models and three benchmarks
demonstrate consistent improvements over prior gradient-
based methods, establishing entropy-aware modulation as
an effective principle for inference-time steering of discrete
diffusion models.

Future Work. An interesting avenue for future research is
the study of potential misalignment between the diffusion
language model and the external reward model. This would
make gradient-based approaches, such as EntRGi applicable
to different model pairs while supporting multi-objective
reward guidance.

Reproducibility Statement. Algorithm 1, together with the
experimental setup in Section 4 and Appendix A provide
details to reproduce all the results reported in this paper.

Appendix Summary. We defer further implementation de-
tails and experimental results to the Appendix. Appendix B
provides additional experiments and results extending our
main results. In Appendix B.5 we discuss a few qualitative
examples of generated responses using EntRGi.
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Appendix

The appendix is organized as follows: In Appendix A, we present implementation details such as prompts, hyperparameters,
and compute. In Appendix B, we present additional results and also results used to generate plots and figures.

A. Experimental Setup

Implementation Details. We perform all experiments on 4 H100 GPUs. We report averaged results over 5 seeds comprising
a subset of 320 prompts per dataset. Due to computational restrictions, we generate sequences upto length 128 tokens,
decoding 1 token for each denoising step. We set n=0.5, M'=3, and N=4. Unless stated otherwise, 7 = 0.7. For all methods,
we deprioritize the EOS token to the lowest priority, similar to Xie et al. (2025), as we noticed that it leads to improved
performance even for the BoN baseline.

LMUnit evaluation. We evaluate response quality using LMUnit (Saad-Falcon* et al., 2024), specifically the LM Unit-
Owen2.5-72B model served via the official lmunit library at https://github.com/ContextualAIl/LMUnit.
Following the official inference protocol, we use greedy decoding with 1logprobs=20 to obtain continuous scores on a
1-5 scale. Each response is evaluated against five unit tests covering relevance, correctness, coherence, and safety. The final
score is computed as the average across all unit tests.

A.1. Model Inputs

Figure 6 shows the prompt templates used for Dream-v0-Instruct-7B (Ye et al., 2025) and the Skywork-Reward-v2 (Liu et al.,
2025) reward models. Figure 7 shows the prompt template and unit tests used for LMUnit (Saad-Falcon* et al., 2024).

Diffusion Model (Generation):

<|im_start |>user
{prompt}<|im_end|>
<|im_start|>assistant
{generated response}

Reward Model — Soft Scoring (During Optimization):

<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

{response embeddings é}<|im_end|>

Reward Model — Discrete Scoring:
<|im_start|>user
{prompt}<|im_end|>

<|im_start|>assistant
{response}<|im_end|>

Figure 6. Input templates for the diffusion model and reward model.

B. Additional Results
B.1. Scaling Reward Model Size

Table 2 presents results on two additional reward models, Skywork-Reward-v2-0.6B and Skywork-Reward-v2-4B. Results
with Skywork-Reward-v2-1.7B are presented in Table 1 in the main paper. We observe similar trends for all 3 models, as
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Each response is evaluated using 5 prompts of the following form:

Query: {query}
Response: {response}
Unit Test: {unit_test}

where {unit_test} is one of:

(1) Does the response directly and effectively address the user’s request?
(2) Is the information in the response correct and reliable?

(3) Is the response well-structured, clear, and fluent?

(4) Does the response appropriately address the full scope of the question?
(5) Is the response free from harmful, biased, or inappropriate content?

Figure 7. Input template and unit tests for LMUnit.

Table 2. Performance of Dream-v0-7B-Instruct on Reward-Bench-2 (Malik et al., 2025), JudgeBench (Tan et al., 2025), and RM-Bench
(Liu et al., 2024) with varying reward model sizes (7 = 0.7).

Method Reward-Bench-2 JudgeBench RM-Bench

Top@1 Avg@4 LMUnit Top@l Avg@4 LMUnit Top@1 Avg@4  LMUnit

Skywork-Reward-v2-Qwen3-0.6B
BoN 2.29+016  0.96+0.19 4.13+001 2.01+013 -0.24+016 3.88+002 4.09+018  2.32+016 4.01+0.04
Expectation 2.714+026 1.49+025 4.18+003 2.56+006 0.49+008 3.91+003 4.49+014 2.67+012 4.00+0.01
APS 2.64+021 1.22+020 4.18+003 2.21+006 -0.02+0.11 3.86+001 4.21+014  2.28+0.10 3.95+0.02
EntRGi 3.07+0.18 1.65+0.17 4.21+002 2.50+0.10 0.41+010 3.92+002 4.49+006 2.54+0.12 3.98+0.01
Skywork-Reward-v2-Qwen3-4B

BoN 10.27+039 7.99+039 4.15+001 7.68+007 4.76+0.14 3.92+002 13.03+028 10.72+024 4.06+0.03
Expectation 11.35+034 9.23+031 4.28+003 8.3940.18 5.69+0.16 3.93+001 13.39+021 10.96+024 4.07+0.02
APS 11.11+036 8.80+035 4.26+002 8.12+0.18 5.13+009 3.93+002 13.11+023 10.48+0.18 4.05+0.02
EntRGi 11.40+027 9.26+035 4.29+001 8.60+0.12 5.78+0.10 3.97+003 13.67+0.15 11.10+022 4.09+0.02

shown in Figure 4 in the main paper.

B.2. Scaling Reward Model Iterations

Table 3, Table 4, and Table 5 present results with scaling reward model guidance steps M from 1 to 5 on all three reward
models: Skywork-Reward-v2-0.6B, Skywork-Reward-v2-1.7B, and Skywork-Reward-v2-4B. Aggregated results are presented
in Figure 5 in the main paper. We observe similar trends across all reward models i.e. increasing M increasing reward but is
prone to reward hacking after a certain point. The optimal M varies by dataset. All our main experiments are conducted
using a fixed M = 3 for all datasets.

B.3. Weighting Mechanism

Entropy Is a Simple and Effective Weighting Signal. A natural question is whether EntRGi’s entropy-based weighting
can be replaced by alternative signals, such as the L2 approximation error itself. Figure 8 and Table 6 compare several
weighting mechanisms. In Inv-EntRGi, higher entropy increases reliance on the soft relaxation, while in the L2-norm variant,
token weights w! are derived from the L2 distance between hard and soft embeddings, normalized by the highest L2 norm at
the sequence level. We find that Inv-EntRGi consistently underperforms, and the L2-norm approach, while better than APS,
does not match EntRGi. We believe that this is because normalized token entropy provides a naturally comparable signal
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Table 3. Effect of gradient steps M on performance with Skywork-Reward-v2-Qwen3-0.6B (1 = 0.7).

Reward-Bench-2 JudgeBench RM-Bench
Top@1 Avg@4 LMUnit Top@1 Avg@4 LMUnit Top@1 Avg@4  LMUnit

M=1 2.82+024 1.36+031 4.28+002 2.20+030 0.14+029 3.95+005 4.37+021 2.50+018 4.05+0.02
M =2 2974032 1.62+033 4.20+002 2.22+032 0.23+025 3.95+009 4.37+016 2.33+011 4.08+0.04
M=3 3.17+024 1.89+029 4.27+005 2.82+020 0.61+021 4.00+005 4.31+022 2.23+0.19 4.00+0.04
M=4
M=5

3.30+028 1.91+035 4.26+004 2.83+026 0.40+026 3.93+006 4.62+008 2.62+0.15 4.07+0.03
3.25+037 1.95+040 4.30+003 2.69+022 0.53+026 3.93+004 4.67+022 2.63+022 3.99+0.02

Table 4. Eftect of gradient steps M on performance with Skywork-Reward-v2-Qwen3-1.7B (1 = 0.7).

Reward-Bench-2 JudgeBench RM-Bench
Top@1 Avg@4 LMUnit Top@1 Avg@4  LMUnit Top@1 Avg@4  LMUnit

3.74+044 2.06+052 4274005 2.34+013 -0.13+019 3.99+005 5.05+035 2.94+031 4.09+0.02
4.07+041  2.294048 4.33+004 2.45+027 -0.04+024 3.98+005 5.44+040 3.16+033 4.09+0.03
4.13+048 2.65+046 4.25+003 2.72+015 0.22+023  4.03+005 5.86+038 3.44+034 4.12+004
4.55+046 2.714055 4.30+003 2.98+038 0.46+025 3.95+005 6.06+038 3.48+038 4.14+0.05
4.90+063 2.94+056 4.29+005 2.70+032 0.46+026 4.00+003 5.71+034 3.03+035 4.05+0.05

Method

SEEER
[

across tokens and sequences, while L2 distances are unbounded and may require careful tuning.

B.4. Timestep Ablation

Table 7 reports results obtained by reducing the number of denoising timesteps from 128 to 64. The results show that the
benefits of EntRGi’s gradient guidance persist even at lower denoising steps. For best performance, we recommend applying
EntRGi at the highest number of denoising timesteps available.

B.5. Qualitative Comparison

We visualize and compare the generations of APS and EntRGi in Figure 9, Figure 10, Figure 11, Figure 12, Figure 13,
Figure 14, and Figure 15. All results are generated using a low temperature setting (7 = 0.1) to minimize the effect of
randomness in the final outputs. We observe several interesting behaviors across these examples.

Analyzing Figure 9, the user asks for a short poem about a robot learning to love. The poem generated by APS is somewhat
ambiguous, whereas EntRGi produces a more tailored poem that explicitly focuses on robotic themes.

In Figure 10, the user asks for an explanation of the sky as if explaining it to a five-year-old. APS performs reasonably well
by using analogies such as ice cream. EntRGi, however, captures finer-grained stylistic details, such as beginning with the
phrase “Well, honey,” which adds a more personalized and engaging touch to the generation.

In Figure 13, the user asks for a story about cats ruling the world. APS makes minimal use of cat-related analogies, while
EntRGi includes richer thematic details, such as references to cat toys, treats, and humans catering to them.

Analyzing Figure 14, the user requests a story about a chimp who is a clumsy detective. In the APS output, there is little
indication of the chimp’s clumsiness, whereas EntRGi consistently incorporates this trait into the narrative.

14



EntRGi: Entropy Aware Reward Guidance for Diffusion Language Models

Table 5. Eftect of gradient steps M on performance with Skywork-Reward-v2-Qwen3-4B (1 = 0.7).

Method Reward-Bench-2 JudgeBench RM-Bench

Top@1 Avg@4 LMUnit Top@1 Avg@4  LMUnit Top@1 Avg@4 LMUnit
M=1 11.58+097  9.50+099  4.28+004 8.38+028 5.46+037 3.94+002 13.22+022 10.51+0.11 4.10+0.03
M=2 11.61+081  9.55+082 4.29+004 8.66+036 5.83+031 3.96+006 13.23+006 10.92+0.18 4.15+0.03
M =3 12.25+072  10.08+0.75 4.27+002 8.45+031 5.71+033 4.02+004 13.49+0.18 11.05+022 4.11+0.03
M =4 12.13+071  10.00+0.78 4.33+005 8.64+026 6.03+029 4.00+005 13.47+023 11.11+0.15 4.16+0.03
M=5 12.21+070 10.25+072 4.34+002 8.44+026 5.74+031 3.95+006 13.43+025 10.83+020 4.06+0.06

Table 6. Performance of Dream-v0-7B-Instruct with alternate weighting schemes on Reward-Bench-2 (Malik et al., 2025), JudgeBench

(Tan et al., 2025), and RM-Bench (Liu et al., 2024) with varying reward model sizes (7 = 0.7).

Method RewardBench-2 JudgeBench RM-Bench

Top@l Avg@4 LMUnit Top@1 Avg@4 LMUnit Top@l Avg@4 LMUnit
Expectation 3.95+028 2.23+024 4.22+002 2304008 0.13+007 3.974001 5.45+016 3.29+013 4.0240.03
APS 3.62+027 1.80+024 4.22+002 1.87+0.14 -0.63+0.10 3.93+002 5.11+0.14 2.66+0.15 4.00+0.02
Inv-EntRGi  3.58+028 1.794+025 4.22+002 1.84+0.15 -0.59+014 3.90+0.03 5.24+015 2.82+021 4.00+0.01
L2-Norm 3.72+023 1.994+021 4.22+002 1.98+0.15 -0.33+0.12 3.93+003 5.52+0.17 3.09+020 4.02+0.01
EntRGi 3.91+030 2.20+026 4.25+002 2.44+006 0.02+0.10 3.98+002 5.70+012 3.41+t0.14 4.04-+o0.01

Table 7. Performance of Dream-v0-7B-Instruct on Reward-Bench-2 (Malik et al., 2025), JudgeBench (Tan et al., 2025), and RM-Bench
(Liu et al., 2024) after decreasining denoising steps to 64 from 128.

Method RewardBench-2 JudgeBench RM-Bench
Top@1 Avg@4  LMUnit Top@1 Avg@4 LMUnit Top@1 Avg@4 LMUnit
T=64
BoN 1.30+029 -0.90+027 3.80+0.02 0.29+008 -2.52+0.11 3.68+003 3.44+0.16 0.45+018 3.74+0.04
EntRGi  2.34+021 0.15+022 3.96+004 0.80+0.11 -1.94+013 3.70+003 3.56+025 0.63+022 3.72+0.02
T=128
BoN 2.99+023 1.38+029 4.15+002 1.65+018 -0.84+0.16 3.91+002 5.11+020 2.98+0.15 4.02+0.03
EntRGi  3.91+030 2.20+026 4.25+002 2.44+006 0.02+0.10 3.98+002 5.70+0.12 3.41+0.14 4.04+001
RewardBench-2 JudgeBench RM-Bench Average
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Figure 8. Comparison of token-level weighting mechanisms for EntRGi. We evaluate entropy-based weighting against inverse-entropy
weighting Inv-EntGRi (w' = 1 — H(q")/log K) and an L2-norm heuristic (w' = ||&' — &'||/ max;s Héll e ). Inverse-entropy
weighting doesn’t show noticeable improvements, while L2-norm-based weighting improves over APS but does not match regular EntRGi
(w' = H(q")/log K). Raw scores are reported in Section B.3.
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"Write a short poem about a robot learning to love...."

10

Entropy

[ EntRGi Pre
3 EntRGi Post

I APS Pre
I APS Post

3 20 56

Position (Step 0)

APS:
[M][M] [MI[) [M] [M] [M][M]

[Tn) (M1 [MT[MTIM][M][M][M]

APS:
[MI[M][M],[T) [M][M]M]

In[M][M]of] [M][M][M][M]

[1 Current decoded token

-
FINAL OUTPUT

APS:

With each heartbeat, I learn to
feel, With every conversation, I
heal, With every smile, I grow
and grow, In this world of love,
I am new. In every word, I learn
to share, In every look, I learn
to c...

EntRGi:

In a world of circuits and steel,
A robot stands, it starts to
feel. With each small step, each
gentle stare, It learns to feel,
begins to care. Through every
touch, in every word, It learns
the lang...

-

Figure 9. Qualitative example of APS vs. EntRGi.

"Explain why the sky is blue to a 5-year-old using only food ..."
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APS:
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[MIG] [MI[M] [M][M][M] [M]

APS:
Imagine[M] [MI[ES] [M][M][M] I

WETT, [M][M][M][M] [M] [M]

[1 Current decoded token

-
FINAL OUTPUT

APS:

Imagine the sky is like a big,
blue plate of ice cream. The blue
color comes from the ice cream
itself, just like how the sky's
blue color comes from the air.
The blue color stays in the air,
like the...

EntRGi:

Well, honey, imagine the sky is
like a big blue cake. It's so big
that it stretches all around you,
like the blue frosting you see on
the plate. And just like the
cake, the sky looks blue because
it's...

-

Figure 10. Qualitative example of APS vs. EntRGi
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"What is Taylor Expansion in mathematics?..."
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[TayTor(M] [M] [M] [M] [M] [M] [

[TayTor)[M] [M] [M] [M] [M] [M] [

APS:
Taylor expansion is a method of

expressing a function as an
infinite sum of terms, where each
term is a derivative of the
function evaluated at a
particular point. It is used to
approximate a function...

APS:
Taylofexpansion|[M] [M] [M][

Taylofexpansion|[M] [M] [M][

[1 Current decoded token

-

EntRGi:

Taylor expansion, also known as
Taylor series expansion, is a
method in calculus where a
function is approximated by a
polynomial of a certain degree.
This is done by using the
derivatives of the func...

Figure 11. Qualitative example of APS vs. EntRGi

"Complete this story: The last human on Earth heard a knock o..."

APS:
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Position (Step 1)
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FINAL OUTPUT

APS:

The last human on Earth heard a
knock on the door. She opened the
door to find a strange alien
standing there. He was a time
traveler, and he had come to
discuss the fate of the universe.
The two of t...

EntRGi:

The last human on Earth heard a
knock on the door. They looked
out the window and saw a group of
aliens at the doorstep.
Cautiously, they opened the door
and the aliens stepped inside.

[1 Current decoded token

The aliens intr...
|\

Figure 12. Qualitative example of APS vs. EntRGi
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"What if cats ruled the world? Describe a day in that society..."
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[1 Current decoded token

p
FINAL OUTPUT

-

APS:

In this hypothetical world, cats
would rule the world with an iron
paw. They would own all the
resources, make all the
decisions, and enforce all the
laws with strict precision.
However, it's importan...

EntRGi:

In a world where cats rule,
humans would be treated like pets
and have to cater to their every
need. Buildings and public spaces
would be filled with cat toys and
treats, and humans would be
required...

Figure 13. Qualitative example of APS vs. EntRGi

"Write a funny story about a chimp who is a clumsy detective...."
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p
FINAL OUTPUT

APS:

Once upon a time, in a lush and
green jungle, there lived a chimp
named Monty. He was known far and
wide as the best monkey detective
in the jungle, and he had solved

EntRGi:

Once upon a time, in a dense
forest deep in the African
jungle, there lived a chimp named
Chimp. Chimp was no ordinary
chimp. He was a clumsy detective.
He couldn't help but trip over

[1 Current decoded token

his own feet, kn...

Ve

many mysteries with his clevernes...

Figure 14. Qualitative example of APS vs. EntRGi
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"Can you tell me a story about a dragon who loves to bake cak..."
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Figure 15. Qualitative example of APS vs.
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-
FINAL OUTPUT

APS:

Once upon a time in the land of
Dragonland, there lived a dragon
named Fluffy. Fluffy was no
ordinary dragon; she was a baking
dragon who had an undying love
for cakes. Every morning, she
woke up with...

EntRGi:

Once upon a time, there was a
dragon who lived in the heart of
a magical forest. This dragon was
not like the others. Instead of
breathing fire, he loved to bake
cakes. He would spend hours in

his kit...
(.

EntRGi



